

ETE/V6291/DW/04-10

Vitolink® power line & serial communication protocol©

1. Introduction

In this document the Vitolink power line & serial communication protocol is explained. The Vitolink power line modem is a method for sending data over the existing power lines. More info about system components can be found in the 'Vitolink hardware specifications'.

When a control signal has to be sent, a series of small interrupts in the line voltage are forming a digital control signal. Sending a 1 is generating a small interrupt in the line voltage at Zero crossing and 0 is no interrupt at zero. (See document Vitolink® hardware specification©). The Vitolink power line has a baudrate of 50 bps.

The control signal for the power line protocol is two or three bytes long and is explained in paragraph 2.

The serial line communication between the cluster controller and MAINCON-S controllers (up to 32) is explained in paragraph 3. The cluster controller sends three or four bytes data to the MAINCON-S controllers.

The cluster controller can also receive 2 information bytes from the MAINCON-S controllers.

2. Power line protocol

The power line protocol is used for communication of 'data signals' over the power line itself between a main controller (MAINCON-S) and load controllers.

A 'data signal' starts always with the start bit to 1 and ends with the stop bit to 1. There are two types of 'data signals':

- A 'command signal' of 2 bytes long sends a command to the addressed load controller
- A 'parameter transfer signal' of 3 bytes long sends a parameter to the addressed load controller.

2.1 Power line 'command signal' structure

A 'command signal' is 2 bytes long (see fig. 1). A 'command signal' starts with the start bit 1 (small interrupt at zero crossing), followed by 7 command bits and 7 address bits and ends with stop bit 1.

© Vito NV - All rights reserved.

Disclaimer:

1

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

Requirement for command bits : <= 108.

figure 1: 'Command signal' structure for power line communication (2 bytes)

2.2 Power line 'parameter transfer signal' structure

A 'parameter transfer signal 'is 3 bytes long (see fig. 2).

A 'parameter transfer signal' starts with start bit 1 followed by 7 command bits, 8 parameter bits, 7 address bits and ends with stop bit 1.

Requirement for command bits :> 108.

figure 2: 'Parameter transfer signal' structure for power line communication (3 bytes)

2.3 Definition of the command and address bits

The command bits and address bits are not free to choose and are assigned in table 1&2.

Table 1: Definition of the command bits

	7 bits command							
Value	Binary	Definition	Structure					
	value							
0	0000000	Load off	2 bytes					
1	0000001	1 % power						
2	0000010	2 % power						
			-					
100	1100100	100 % power	2 bytes					
101	1100101	Free To Define (TD)	2 bytes					
102	1100110	free To Define (TD)						
103	1100111	free To Define (TD)						
104	1101000	free To Define (TD)	2 bytes					
105	1101001	Check load: defect and end or life	2 bytes					
106	1101010	Address allocation: load connected and on	2 bytes					
107	1101011	Address allocation: load connected and off	2 bytes					

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

108	1101100	Address allocation: load connected and on or off	2 bytes
109	1101101	free To Define (TD)	3 bytes
110	1101110	free To Define (TD)	3 bytes
111	1101111	free To Define (TD)	3 bytes
112	1110000	Addressed byte parameter 1 transfer	3 bytes
	-		-
		•	•
127	1111111	Addressed byte parameter 16 transfer	3 bytes

16 different parameter bytes (parameter 1 .. 16) can be transferred from the MAINCON-S controller to the load controllers with a 3 bytes parameter 'transfer signal' structure.

Table 2: definition of the7 address bits.

	7 bits address									
Value	Binary value	Definition								
1	0000001	Individual load address 1								
2	0000010	Individual load address 2								
-	-	-								
	-									
118	1110110	Individual load address 118								
119	1110111	Load address group A								
120	1111000	Load address group B								
121	1111001	Load address group C								
122	1111010	Load address group D								
123	1111011	Load address group E								
124	1111100	Load address group F								
125	1111101	Load address group G								
126	1111110	Load address group H								
127	1111111	All loads								

By consequence 118 loads can individually addressed or 8 groups addresses.

2.4 Power line protocol examples

The control signal of figure 3 is two bytes long. The command byte 'check lamp' checks the end of life for the lamp with address 99.

Figura	3.	End	\mathbf{of}	lifa	check	for	addrassad	lamn	00
riguit	э.	Linu	01	me	CHUCK	101	auuresseu	Tamp	22

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

3

The command byte in figure 4 = 106 (address alloacation and load connected on). This means that the load that is on and connected to the grid gets a new individual address.

Figure 4: The new address for the load that is on and connected to the electricity grid becomes 7.

The control signal of figure 5 is three bytes long and a parameter is send to the addressed load controller. Parameter byte (255) is send to addressed load controller (8) and is changing parameter 1 (addressed byte parameter 1 transfer).

Figure 5: Addressed byte parameter 1 from individual load address 8 becomes 255

The 8 parameter bits can be have value from 0 till 255.

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

3. Serial line communication protocol

The serial communication protocol is used for communication of 'data signals' between a cluster controller and main controllers (MAINCON-S). Up to 32 MAINCON-S controllers can communicate with one cluster controller.

The cluster controller can send two types of 'data signals' to the main controllers:

- A 'command *signal*' of 3 bytes long is used for sending a command to the addressed load controller and MAINCON-S controller.
- A 'parameter transfer signal' of 4 bytes long is used for sending a parameter to the addressed load controller and MAINCON-S controller.

The cluster controller can receive 2 data bytes from the MAINCON-S controllers. The MAINCON-S controller sends information bytes back to the cluster controller (paragraph 3.4). Those bytes contain information about:

- status check from the load (defect or end of life detection)
- Power measurements

3.1 Serial line 'command signal'

The cluster controller sends 3 bytes to the MAINCON-S controllers: the MAINCON_S controller byte followed by the command byte and the address byte for the load controller (fig 6). The address byte MAINCON-S controller is explained in paragraph 3.4. The command byte and address byte load controller are the same as in paragraph 2 (table 1 & 2) and are always < 128.

MAINCON-S controller byte					Command Byte				Address byte load controller												
MSB							LSB	MSB						LSB	MSB						LSB

Figure 6: Serial communication protocol 3 bytes.

3.2 Serial line 'parameter transfer signal'

Four bytes serial communication is used when a new parameter byte is send to load controller(s).

The cluster controller sends 4 bytes to the MAINCON-S controllers: the MAINCON_S controller byte followed by the command byte, the parameter byte and finally the address byte for the load controllers (fig 7).

MAINCON-S controller byte	Command Byte	Parameter Byte	Address byte load controller				
M	M	M	M				

© Vito NV - All rights reserved.

5

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

3.3 MAINCON-S controller byte structure = <3 type bits> and < 5 address bits>

In the MAINCON-S address byte are the 5 least significant bits used for addressing the MAINCON-S controllers. The cluster controller can address 32 MAINCON-S controllers. Each MAINCON-S controllers can have 118 loads. The cluster controller can address 118 * 32 = 3776 loads on this way.

The 3 most significant bits determine the kind of information that is send back from the MAINCON-S controller to the cluster controller if the command byte = 105 (decimal). With another value of the command byte have the 3 MSB no significance.

3.4 Definition of the MAINCON-S controller byte

MAINCON-S address byte: 5 address bits (LSB)						
Value	Binary value	Definition				
0	00000	MAINCON-S address 0				
1	00001	MAINCON-S address 1				
2	00010	MAINCON-S address 2				
-	-					
31	11111	MAINCON-S address 31				

Table 3: definition of the MAINCON-S Controller byte.

MAI	NCON-S address byte:	3 info bits (MSB) and 5 address bits (LSB)				
Value	Binary value	Definition				
	000 + 5 address bits	End of life check load return to cluster controller if command byte = 105				
	001 + 5 address bits	Individual power measurement addressed load return to cluster controller id command byte = 105				
	010 + 5 address bits	Total Power measurement MAINCON-S controller return to cluster controller if command byte = 105				
	011 + 5 address bits 111 + 5 address bits	To Define To Define				

3.5 Send back information from the MAINCON-S controllers to the cluster controller

A special data transfer is reached when the command byte = 105 (check load command) in a three bytes serial information data signal. With this command byte information is send back from the MAINCON-S controller to the cluster controller.

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

If the command byte = 105, power measurements are done with POW-MOD1. The result of this measurement (information bytes 1 & 2) are send from the MAINCON-S controller to the cluster controller (fig 8). Those bytes contain information about the status of the load. The send back information depends on the 3 most significant address bits from the MAINCON-S controller.

Figure 8: information bytes to cluster controller after command byte = 105.

Table 4: definition of the information bytes

Information byte 2	Information byte 1	Definition
00000000	00000000	Addressed Load NOK
00000000	00000001	Addressed load OK
00000000	00000010	Load age NOK
00000000	00000011	Load age OK
XXXXXXXX	XXXXXXXX	Power measurement value:
		Information byte 1 = Least significant
		value and information byte 2 = most
		significant value

Figure 9 shows the three bytes serial communication flowchart. The cluster controller can send every 1 second information to the MAINCON-S controllers, exception with command byte = 105. With this command byte the status of the load controllers is asked individually.

When the cluster controller has read the result of the power measurement (information bytes), a new message can send to the MAINCON-S controller.

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.

3.6 Four bytes serial communication flow chart.

The cluster controller can send every 2 seconds a new parameter byte to the MAINCON-S controllers (fig 10).

Figure 10: 4 bytes serial communication flowchart.

© Vito NV - All rights reserved.

Disclaimer:

Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, Vito assumes no responsibility therefore. The user of the information agrees that the information is subject to change without notice. Vito assumes no responsibility for the consequences of use of such information, nor for any infringement of third party intellectual property rights which may result from its use.